The promise and peril of a digital ecosystem for the planet

Authors: Jillian Campbell and David E Jensen, United Nations Environment Programme (UNEP)

Reviewers and case study contributors: Brian Sullivan (Google), Lucas Joppa (Microsoft)Anne Bowser (Wilson Center), Steven Ramage (Group on Earth Observations), Gavin Starks (IceBreakerOne), Laurent Durieux (French National Research Institute for Sustainable Development), Andrew Zolli (Planet), Alison Lowndes (Nvidia), Annie Virnig (UNDP) and Gary Lewis (UNEP).

A range of frontier and digital technologies have dramatically boosted the ways in which we can monitor the health of our planet. And sustain our future on it (Figure 1).


Figure 1. A range of frontier an digital technologies can be combined to monitor our planet and the sustainable use of natural resources (1)

If we can leverage this technology effectively, we will be able to assess and predict risks, increase transparency and accountability in the management of natural resources and inform markets as well as consumer choice. These actions are all required if we are to stand a better chance of achieving the Sustainable Development Goals (SDGs).

However, for this vision to become a reality, public and private sector actors must take deliberate action and collaborate to build a global digital ecosystem for the planet — one consisting of data, infrastructure, rapid analytics, and real-time insights. We are now at a pivotal moment in the history of our stewardship of this planet. A “tipping point” of sorts. And in order to guide the political action which is required to counter the speed, scope and severity of the environmental and climate crises, we must acquire and deploy these data sets and frontier technologies. Doing so can fundamentally change our economic trajectory and underpin a sustainable future.

This article shows how such a global digital ecosystem for the planet can be achieved — as well as what we risk if we do not take decisive action within the next 12 months. This is an extended version of the Foresight Brief issued by the UN Environment Programme in September 2019.

We human beings have given ourselves 10 more years to achieve the SDGs. But the next 12 months will be critical. During this short period of time the following determinative events will take place:

  • The Climate Summit in New York in September 2019 will set the agenda for the next decade on climate change.
  • The Climate COP in the UK in 2020 will revise the Paris Agreement.
  • The Kunming COP on biological diversity will set new 20-year targets for the “more silent crisis” of the slow loss of nature.
  • Finally, the UN Convention on the Law of the Sea will set the agenda for the hydrosphere through a new global oceans treaty.

All available evidence shows that we are not on track to avert the two greatest existential environmental challenges on our doorstep: the climate crisis and the nature crisis (2). We are not even effectively measuring global progress against the SDGs. A total of 68% of the 93 environmental SDGs indicators cannot yet be measured due to a lack of data (Figure 2) (3). All efforts to marshal knowledge and action are thus required. Having a digital ecosystem in place will be absolutely critical to what happens to our home on this planet in the coming decades.

Figure 2. 68% of the environmental SDG indicators cannot yet be measured due to a lack of data

What’s at stake ?

Our world is undergoing dramatic digital transformations (Figure 3)(4). Over 90% of all the world’s data has been generated during the last two years (5). Mobile devices connect five billion people on the planet (6). New satellite technologies image the entire surface of the Earth every day down to a resolution of three meters (7). New cloud computing and artificial intelligence algorithms allow us to monitor, detect and predict environmental and climate threats based on a stream of earth observations, ground sensors and other data points (8, 9, 10). On top of all this, social media has become a political force. It shapes perceptions. It influences the fabric of civil discourse and dialogue on environmental challenges and climate change (11). And it also permits the acquisition of additional knowledge on the extent, shape and pattern of environmental challenges we face all across the planet.

In order to reach the point where we marshal the digital ecosystem to our advantage (28), policy makers, businesses and citizens need to more actively embrace the complexity, scale and magnitude of these changes and their consequences.

The challenge is that while there is broad recognition that humanity must capitalize on this massive increase in data generation and processing power (figure 3) to help monitor and manage the state of our planet, there is no common vision, directed strategy or governance framework (29). We still lack a planetary dashboard to monitor our critical natural resources and ecosystem services at the global, national and local levels. Moreover, we cannot capture the promise of frontier technologies for the planet if we don’t also address the potential perils and pitfalls.

Figure 3. Sources of data that can power a digital ecosystem for the planet

Currently, a myriad of public and private sector actors is building data sets, digital infrastructure, algorithms and insights for the environment. But these actions are haphazard and fragmented. In a new — and welcome — development, private sector actors are beginning to offer digital public goods and related analysis (30). But this is happening without a broader understanding of the long-term business models and incentives that should sustain and finance these services. A global conversation is therefore needed to determine how these efforts can best sustain global public goods, protect privacy, achieve inter-operability and keep quality standards high. Finally, we need to decide how to govern and pay for this digital ecosystem. This will yield answers to the question of how to maintain a balance between public and private sector interests and incentives.

But the first step is to start ratcheting-up talk about our digital ecosystem for the planet.

Building a Digital Ecosystem for the Planet

Some of this work has already started. The UN Science-Policy Business Forum established a working group on “Data, Analytics and AI” back in May 2018. The aim was to kick-start a global conversation to seize opportunities and establish appropriate safeguards and effective governance. Over 100 stakeholders were involved. Among them were scientific and citizen-science research communities, government and policy institutions, a variety of technology companies and non-governmental organizations. Early in 2019, the working group produced a number of clear ideas making a strong case for a digital ecosystem. These are contained here “The Case for a Digital Ecosystem on the Environment” (31, 32).

The remaining sections of this article summarize the arguments in that paper. Again, these are perspectives from a cross-section of thought leaders determined to secure a solid evidentiary basis for fixing our planet’s environmental crises.

The main call to action of this article is for public and private sector actors to continue building on this common vision.

The global digital ecosystem should consist of four elements: a) raw data, b) a supporting technological infrastructure, c) algorithms and analytics; d) insights and applications. All this will then be used to support a transformation in our thinking and behavior. One which produces a social tipping point and delivers different sustainability outcomes (see Figure 4).

Figure 4. A digital ecosystem for the planet integrates data, infrastructure, algorithms and insights to achieve different sustainability outcomes (33)

A digital ecosystem can be defined as ‘a complex distributed network or interconnected socio-technological system’. It features adaptive properties like self-organization and scalability. In this sense, a digital ecosystem, much like natural ecosystems, is characterized by both competition and collaboration among its many diverse public and private sector components.

But it is the numerous interactions and linkages between these seemingly individual or autonomous entities that make an ecosystem functional. Similarly, a digital ecosystem for the planet must connect individual data sets with algorithms and analysis in order to create robust and timely environmental insights and intelligence. It must generate the correct insights at the right scale. It must deliver these at the right time and in the right format. Their goal must be to influence decision-making, action and — crucially — future investment.

As data flows through the ecosystem, it is eventually transformed into insights that can be used for decision making to achieve other sustainability outcomes (Figure 3). Governance strategies and standards will be needed for each step of the transformation process:

  • Raw Data: The foundation of a digital ecosystem is numerous data sources, including small and big data on environment. These must be collected through various methodologies including official statistical reporting, earth observations, in-situ sensors, citizen science, commercial datasets and other relevant data streams. The ecosystem will include essential information such as metadata documentation and provenance, licensing, collection methodologies and peer review. It will need to delimit for potential biases, confidence levels and relevant use constraints. For each type of data source, standards and guidance will need to be adopted for quality assurance, data labeling and inter-operability (34,35,36,37). This will also require investments to ensure that data models are developed in a way that informs policy and that data is structured and managed in a way that allows high-quality, comparable and trusted analysis. At a minimum, contributors to scientific data pools must be required to publish FAIR data (Findable, Accessible, Interoperable and Reusable) (38).
  • Infrastructure: The infrastructure for a digital ecosystem will store, process and connect existing databases. It must seek to improve metadata, discoverability and accessibility. For obvious reasons, due to the volume and complexity of such data, it will be impossible to host it centrally. But an ecosystem does not require that all data be pulled into a single central location. Rather the focus will be on bringing data, algorithms and processing power together in various clouds. These will be connected in a manner where data can flow and interoperate seamlessly. But this will require compliance with open application programming interfaces (APIs) and other emerging standards. For this reason, all actors contributing to the digital ecosystem will be obliged to publish information on the infrastructure they are using together with information about their open source and commercial software.
  • Algorithms and Analytics: Data and supporting infrastructure are, together, the backbone of the digital ecosystem. But these will require algorithms and analytics in order to extract actionable insights and business intelligence. Data science and artificial intelligence (AI) algorithms are already available and growing in number and quality. These will be used to yield data insights. But processes are needed to ensure quality and transparency while avoiding bias and protecting privacy. Peer reviews, open algorithms, and public documentation of processing methods will be essential to ensure public trust.
  • Insights and Applications: The final part of the process is to transform the knowledge thus generated into actionable insights and evidence. End users need to integrate multiple information streams into metrics and performance dashboards. Such insights and evidence must be made comprehensible to decision-makers, investors, consumers and citizens alike. Timing is essential if public participation, accountability and market pressure is to be sustained in pursuit of the sustainability goal. So is placement, scale and format. Public trust in the resulting insights will be best assured when applications are co-designed together with end users and related institutions. Increasingly, we are witnessing calls for companies to publish information on the business models they are using. This will be needed if potential conflicts of interest can be identified and managed.

The aim is to eventually use the insights to produce outcomes that power sustainability for people and planet. These can include:

  • real-time planetary monitoring and predictive analytics for global and national environmental targets — a basic planetary dashboard;
  • environmental risk information to markets and commodity supply chains;
  • product sustainability information to inform and nudge consumers; and
  • verified scientific information for social media to educate and engage citizens.

What is already being done?

The foundations of a global digital ecosystem for the planet are already being built and tested by a variety of public and private sector actors. The following examples point the way. They show how a combination of data sets and new technologies can provide environmental insights and intelligence that are better, faster, cheaper and easier to access when compared with business as usual. They also show how new sources of data can be collected from a combination of public and private actors as well as citizens. Importantly, these examples are committed to publishing derived data products in an open format as a digital public good, contributing to open source software and adopting important global standards and transparency measures.

Global Forest Watch and Resource Watch

The World Resources Institute (WRI) is one of the leading non-governmental organizations to leverage the power of frontier technologies for monitoring the pulse of the planet. Global Forest Watch (GFW) is an open-source web application to monitor global forests in near real-time using satellite images and AI. The GFW is an initiative of the World Resources Institute, with partners including Google, USAID, the University of Maryland, Esri, Vizzuality, GEF, UNEP and many other academic, non-profit, public, and private organizations.

More recently, Resource Watch was established to extend the monitoring capabilities to other natural resources using open geospatial data and statistics. Resource Watch provides journalists, analysts, decision makers, and students the opportunity to explore more than 200 available data sets on the state of the environment, including access to an open API for data sharing. Collaboration with Resource Watch has also enabled the National Geographic Society to launch EarthPulse — a data-driven platform that enables the operational monitoring of key global ecosystems across the planet for decision-makers. Summary dashboards provide actionable information that are updated with the best scientific datasets. The dashboards are augmented with emotionally engaging storytelling and photos to bring the data to life.